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Abstract. Using the operator formalism, Ward identities are derived for super Wj
conformal field theories on a supertorus. Differential equations of cormrelation functions
on the supertorus are also derived by using the Ward identities and null vectors,

1. Introduction

The study of extended conformal and superconformal field thecries has been
playing an increasingly important role in the recent development of conformal and
superconformal field theories. Among them the W theories have attracted much
attention [1-21] since the original paper [1] by Zamolodchikov appeared. Fateev
and Zamolodchikov [2] investigated in detail the W; algebra and constructed the
degenerate representations of the algebra by a Feigin—Fuchs construction. A spin-/V
generalization (W), algebra) has been given [3] and the explicit expressions of the
W, [4] and W, [5] have also been given. The super W, algebra was examined
in [6-8] and the N = 2 super W algebras have also been examined [9-11]. Al
of these extended conformal and superconformal field theories are formulated over
Riemann surfaces of genus ¢ = 0. As emphasized by Polyakov [22], Cardy [23]
and Bernard [24], we have to examine these theories on a torus and higher genus
Riemann surfaces in order to find a complete description of all conformal and super
conformal field theories. Recently, considerable progress has been made in the study
of the extended conformal field theories on higher genus Riemann surfaces [25].
When one considers an extended conformal field theory on a higher genus
Riemann surface, the theory acquires complex analytical structures and the combined
use of algebraic and analytic methods provides further information on the properties
of the theory. The correlation functions of the theory depend holomorphically on
the modular parameters and local coordinates of the Riemann surface. The extended
conformal symmetry of the theory must lead to the existence of the Riemann surface.
As is well known, ward identities in a theory play an important role in determining
correlation functions of the theory. For example, by using the conformal and cusrent
Ward identities on a torus, one can derive the differential equations for characters
of Virasoro and Kac-Moody algebras [24,26,27]. A general formulation for deriving
Ward identities on general Riemann surfaces was given by Eguchi and Ooguri [28].
Tie Ward identities of the N = 1 superconformal algebra on general super Riemann
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4148 Chao-Shang Huang and Liang-Xin Li

surfaces have also been given {29,30]. In a2 previous letter [31], we derived the Ward
identities for the W, algebra on a torus.

In this paper we derive the Ward identities for the W, algebra on a supertorus,
which are useful in calculating the correlation functions on the supertorus. Because
the case of odd spin structures is more complicated than that of even spin structures
we will give the derivation of Ward identities only for the former and results for the
latter. We also derive differential equations satisfied by correlation functions on the
supertorus in the super W, conformal field theory.

The rest of this paper is organized as follows. In section 2 we review the definition
of a supertorus and spin structures and express correlations on the supertorus in
a form of trace. We derive the Ward identities of the super W, algebra on the
supertorus in section 3. Derivation of differential equations for correlation functions
is given in section 4. The last section contains the concluding remarks and discussions.

2. Correlation functions on the supertorus

The genus 1 super Riemann surface, the supertorus, can be generated by two
translations on the super complex plane specified by even and odd coordinates ( z, 8)
{24,30,32]. There are four spin structures on the supertorus since there are two types
of boundary conditions, periodic (+) and anti-periodic (—), for the odd coordinate
¢ and two directions of periodic boundary conditions, 2z — z+ 1 and = — z + 7
(corresponding to a-cycle and b-cycle), for the even coordinate =, For the odd spin
structure (4, +), the generators of the translation are

Z=z+41 6'=29 (la)
and

2=z B8 =046 (1b)
where 7 and § are moduli and supermoduli parameters respectively.

For the even spin structures with (a;,a,) = (+,—), (—,—) and (—, +), they can

be taken to be

Z=z4+1 8'=a,b (2a)
and

=247 & = a,8. (20)

For conformal field theorjes, in the operator formalism the correlation functions on
the torus can be expressed as

((}51('&',1) v qsﬂ.(u‘-n,)) = tr(qﬂu~cf24¢1(u1) e an(un))/Z(?") * (3)

where ¢ = exp(27it) and Z(7) = tr{g™~°/%*), The trace should be taken to realize
the periodicity in the b-cycle (the + direction) while the periodicity in the e-cycle is
reflected by using a cylinder coordinate z = exp(—2miu).
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For N = 1 superconformal field theories spin structure should be taken into
account and one has [30,33]

(X) = {951(11-1, 51) e ¢n(un5£n))
= tr((=1)F P/ exp(— (=271} 26 Gp) 1 (u1, £1) - - - B (uns€s)) (@)

for the odd spin structure where the trace is taken in the R-sector, and
(X} = tryg((~1)F ghoe/2 X)) (5

for even spin structure (—,+). Similarly for {(—,—) we get rid of (—) while for
(+,—) we get rid of (—)¥ and take the trace in the R-sector. In the above equations
F is the fermion number. Note that we have defined the correlation functions for
superconformal field theories without dividing by the partition function Z since it
may be a nilpotent even Grassman number.

3. Super W, Ward identities on the supertoros

The generators of the super W; (it is also called super W ,; see, for example, [7,9])
‘symmetry are the energy-momentum superfield I(z,8) = 1G(z) + 6T(z) of weight
2 and the superprimary field J(z,8) = V(z) + W (z) of weight 3. The mode
expansions of their component fields on a plane are

T(z) = Z L,z""? G(z) = ZGPZ'T-:VZ (6)
ngz r

W(z)=Y W,z™"  V(z2)=) V,z7% (7)
nez *

where r runs over the half-integers or integers in the Ns or R sectors respectively.
The mode L,, G,, W, and V, generate the super W, algebra as follows [8}:

[Lns Lyl = (1 = m) Ly + 737(n? = D g
[L'n.! Gr] - (%n’ - T‘) Gn+1"

C
{GrDGs} = 2L-r'+.-.e + §(R2 - %)5r+s,0

[LnﬂI’Vm] = (Zn - m)ufn-[-m
[GT., Wn] = (4?‘-—- n)Vr+ﬂ

3In
20V = (5 ) Vs
{Grﬂ Vs} = Wr+s

— <
~ 3.5!

1
- "6'('”' + 2)(m + 2)) Ln+m + bz(n - m)An+m

(W, Wil = 55 (02 =60 = 1)1 (=) (k4 2)(nk k3
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V,] = —5(16r° — 4n® — 12r?n + 8n? - 36r + 19n)G

17((n+2) ntr %Kn+r)

1 5
— e _1\ (2 — 85—
Ve Vo) = 360( 4) (T 4) res0t 120(6” +65° = 8rs =9)L,,,

21 + 7
136 Arts 34

[ nt'r n+r

+ TH, (8)

where the central charge ¢ is equal to 0 for the unitary super W, model, the fields
P and K are descendents of the supersymmet:y generator G-

P(z) =: TG :(2) - 38*G(z) (9)
K(z)=2: T8 :(2) - $6°G(») (10)

H is the bosonic field of weight 4 that can be constructed out of T' and G such that

H(z)=: GOG :(Z)—%&ZT( N+ s fzzA( ) (11)

and
Az)=: TT :(z)- %82'1“(::). (12)

As usual, we have associated any field ¢{z) of weight A with its modes ¢,, according
to

Ou(2) =Y ppz7" R, (13)

From superconformal symmetry one can easily find that a primary superfield
&;(z,0) = p;(z) + 01p;(2) of weight A; in the super W, field theory obeys the
following operator product expansion:

v;6120;(2, 92) W116128z2¢’ {22, 62)
3

J(21,0,)0:(2,0,) =
12 Y1 22 V2 z12 z12

1
+ ;—[(W' - Wi1)0,,D,8:(2,,0,)
+ W;2015(82,0,(22:85) + W30135:(z,,0,)] + reg (14)

where 012 = 91 - 92, Zla = %y — &y — 8162, DZ = 892 + 82622

3'Ui . 37)1'
Wa=za, YT Eea
(15)
W_rl 24(‘&:' — l)vi 14 3Ui

37 LA, + 1) + 24,87, — 5) 17 A, F1/2)
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and

3

2
Z(_Zmaz¢‘(z’9)

Si(2,8) =t T¢; : (2,6) -

are the quasisuperprimary fields associated with the superprimary field ¢;. Therefore,
in addition to the well known (anti-) commutation relations

[Ln, #i(2,0)] = 2 [(n + 1)(A; + 36D} + 28,1 $:(2,0) (164)
(G, &5(2, )]y = 2"V [~A;(2r + 1)6 + 2(8; — 08,)]6;(2,6) (16b)
one has

(n+2)(n +1)
2

(W, ¢:(z,0)] = ( vz, 8) + 2Wis(n + 2)99,

+ 2(n+ 2)(Wy = W,)00D; + Wy 2206 + Wigs5,(2,6) ) (170)

V., 6:(2,0)], = __za_uz(g(n + 3/2)2(n + I/Z)v,-é,-(z,9)+Wi1(n+3/2)z98¢,-

— (W}, = W,;|)228Dé; + W,82°8%¢, + W;,0225,(z, 9)) (17b)

for the primary superfields ¢; of the super W, algebra.
We now derive the super W, Ward identities on the supertorus. For this purpose
and for the sake of convenience, we define

JE(u) = (=27 2V, >0t JF(u) =3 I ()
n

(18)
IB(u) = (—2niPPW, e?ne JB(u) =" JE(u)
with J(u,€) = JF(u) + £J8(u) = 3, J,(u, &) being the generator of weight 3
in the cylinder coordinate z = exp(—2iu), and similarly,

IF () = (szgly—zan i [P(u) =Y IF(w)
" (19)
IZ(u) = (=2mi)’L, e*rinv IB(u) = "18(u)

for the energy-momentun superfield I{u,&) = IF(u) + €15 (u).

According to (4), for the odd-spin structure, the correlation functions with an
insertion of the generator J(u,,£,) are given by
(I (ug, €)X} = tr((~1)F g™ exp(—(—2x1)/?6Gy) I (g, €0) X )

= D tr((—1)F g™ exp(~(=2mi) 126 Gy) T, (g, £9) X) (20)

n
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where we have omitted the constant factor ¢/?* for simplicity, which is irrelevant in
the manipulations below.
Using a permutation invariance trace and (8), it is easy to get

A, = t((—1)F g% exp(—(~2mi)*6Gy) T, (ug, £5) X))

= 1 lIE o) + (8 692 (o)), X1 @

for n # 0, where Q™ = exp(2win(r + £,6)) and § = [@*/(1 — Q™)}6. Calculating
the commutator in (21) by using (17) and substituting (21) into (20), one obtains the
following Ward identity for one insertion of the generator J{u,¢) [35]:

{(J (g, £0) X} = {Jy(ug, §0) X}

1.

N : ,
+ ;{—; [%H(uosl‘rai) + %(Eo — &) (P (ug; o) + 27?1(7'9;))]

£ W (60~ €8, CCulrn) = 2 ) — 1By H )] 2,
— (W) = W )(§(ug; | mo;) = 2m (g ) ug: )O D,

+ Wiz [%H(uuih'u;) - (50 — &) (ugi i) 27?1("'0:‘)“05)] 83“
~ (60— EWiCulre) - I(mue) I fLX) @)
where

ug; = g~ u; — £é; T =T+ €+ &;)6 D, =39; +&,8,,

5. = __ Wy a2 q" .
W, =W, 204, + 1) H(u|r) =8x nz#:o _(1 Py exp(2winu)
P(u|7) = (—Zwi)zg_;m - _”qn exp(2minu) — 2ny(7)

: 1 .
((ult) = (=271) Z =7 exp(2rinu) + 2 (THu.
nEld

and () = 27xid, Inn(r) with n{r) being the Dedekind 7-function. In (22), the
operator L:, is defined by

N
LX) = {2Wi3r+Z{Ai[("ZWi)z??s‘i'(—ZWi)z‘Sf??a;)]“*”%((—2"""”2(5!"@3—’?25))95

i=1

+(Q(017) - (~200)ny8)9,, }}X) @)
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In a similar way, by means of (16), (17), (21) and the super W, algebra (8), one
derives the Ward identities for two insertions of the generators:

(J (g, E) T (g, §1) X} = {Jp(ug, §) IX) + {% [(50 ~ &) (P (ugy| ) + 21 (01))
+ Zi"f;auuH(umle)] + %C(uo1l'f'01)D1 + [(Eo — §1)¢(ugl701)

- EH(uﬂllTﬂl)] aus}(J(”l’ £0X)

N+2
+ 3 { S [0 B ) + 0060 — 6P (i) + 270

=2
, "
+ Wi | (&0 — €:)85(C(mgi e ) — 2 (70 ;) — j};aoH(”o:'i'f'm)] 8,
— (Wi — W) (¢ (ugs)7o;) — 211 (7g;) g )0 D

- | —ié
+ Wy, E%‘H(UD”TD:') — (&g — &) (Cug;|mgy) — 27?1("'0{)“0&)] &7

- Wyl = £)(C(ualro) - 2o ELa T (u €0X) (24)
and |
(9 Catgs £0) Caay, €D X) = (o2t £0)TX) = 555 06(¢ (gl rep)

— 21y Crog Yuan) (g 60 ) + 5 [(69 = £)88(C tnl ) — 2 (o]

- l6-5"0 H (ug|mo) I X) = %(35((:(“01[“'01) = 2m (7o) up ) ) Dy {IX)

+ | R H )~ (8o £ B 70) =2 o) B )
+ gao(f:(“oﬂ”'m) — 2 {7 )ue ) O D {IX)

+ {Eiéaﬂﬂ(uml?'m) — (&0 = ED(P(uglmor) + .2’71(T°1)}

1 337
X [13 oX) + —““40§1<AX)] — (((uglmor) ~ 2m (1) ugy)
28
y (516‘92‘01 ) = DT X) + mo(AX) + 51(1{){))

+ [ES—H(UGIFTGQ (& — &1)(C(ugy | 7g1) —2771(701)“01)]

x (3333(1)() + 2ikx) + ﬁﬂlmm)
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+J§:2{ ( 8 H (ug;lmo:)+(40—; )33(?9(%,lro,)+2n1('ro,)))(JX)
Wi (6o €) B2 ) By H 7)) 4 X)

— (Wi = Wis)(C(uilmas) = 20y (rluag)ODATX)

+ W 2 H ) — (6 = €(CCumln) = 2m (o)) 92.X)

~ Wil = £:)(C (sl res) = 204 (raJas) L 4T X) @25)

where Ty is a spin-1 field which is defined by

Tolu, ) = Q(u) -} H(u) = I§ - }¢TF (26)
with

Qu) = TF(u) = 215 IF)(u) — %leF(u)
and

T8 (u) = 4(IF 617 ) u) — 17—03215(1;) + Sc—:_?-ﬁ.f\(u).

Here, (1217 )(u) etc denote the normal products of two field operators which can
be expressed as follows:

(IPI7)(w) = § dug——IP(u) I (u).
Cy HO u

Through some tedious calculations, we obtain the following expressions of the
correlation functions involving I'y or A or K:

(T (ug)py - ) = (LX) = 2{211'18 A+ZA (‘P(uu u |+ = ( 27r1)2n3)
i=1

+ Z(A 108; 52 H (vg — u;|7) A — ZaoC(uo — w[r)E D A

- (- 27"1)227?253 - ZaoD A+ ((0]7)8 + ZC(”{) = u;lr)A

z:l i=1

3 g g i) A - ”’—“ZE %0CCto = wlr)(X)

i=1

_ Joe ZaoH(uU — u )X - 532,4} (27)
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N
(08 ) = 4] 7i(8, — 80,) A+ 3, [e:(A,80(Pg = i) + 20,(7)
, i=1

+ 8, (P(ug — u|7) + 2?71(7))30)A + (30 H(ug — wl7)

+8yH (up—u;[7)8) A+ (555533(g(f(uo—usIT)—27?1(T)(“0—H1'))

+ gz Hluy = wlr) = 66(P(ug = wlr) + 20,() )8y ) D A

— £(Bp(E(ug — ug|T) — 2my(7)(ug — u;)) + (€(uy — u,lr)
—z'fh(T)(uo““z‘))an)aeA—%(H(uo—us|”')3035+3QH(“0—“;'[T)3;)A:|

+ %?;(—(—Zvri)zswzns + (2xi) 167, 8,) A — ZI%((—ZWi)zSn—ZnZ

17 7

+ H(O[T)2,)00A + 5(~2mi)*ng(X) + 5255 (AX) - 15

— 8B

1&56

(Aug)X) = (=270)3, B + Z 82 H(uy— u;|r) B — 12im6n, A

i=1
1 /—is
+ EZ(H%H (g = w;|7) = (P(ug — wy7) + 2771)&)0 B
=1

3 (—2ni)? N
—27%6n A+ - 5 3B - E[(—)C(uu —u;[r)8,, + ((0[T) 5l B

i=1

. N
ié c .
- (2momao- > oM (s~ wlr), ) A+ S(-2miPnX)

3 _
-1 anB , (28)

and
N
(K (g £0) X ) = 4{2"i3r30A+z[Ai(ao(P(“u—uilT)+2??1(T))+(P(Uo_ui|7')
i=1
4 2my(r))8y + S(~2mi)ms0) A+ A2 (83 H (g = ;1)

+ 8FH (ug — u;|7)8y) A — (85(&(nq — “il“') = 2y () (ug — u;))€; D;
+ By (€ (g — gl ) ~ 2ny () (up — 4;))6: D;80) A + 3(—2mi)26m,8, B

- gi—‘:;(anzﬂ(uo = w;|7) Dy + 8y H (g — w;|7) D;3y) A + ({(0]7) 8,
+ (§(ug— u,lr) - 20 {) (- “i))ai)auA + 3(E(uy — ul7)
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i€ 8
2y () (g = )0, A+ L (O H (g = ) + 0o H (g = 5] ) A
1me -
- leias(e(ua — wglr) = 20y (7Y (ug — ) H{X)

;géaoﬂ(uo ,;|T)(X)j|} E}aﬂt (29)

B:{zwiaf+§:{ ,;[P(uo ]'r)-{— aoH(un elf)]
1
45

+ ( £:80(¢ (2t ws|7) = 20y () g = )+ 8y H (g = ,|¢))D
+ (o~ ) - B0,y - u,:lr)é’,-}}(X) 30)
and
. N is
A= {71'1(35 - 688,.)~ Z [E,-(A,-(P(un —u;|T)~2n) + 4—WA56i80H(u0 — u,lr)
i=1

+ ey~ im0 + Loy H (- wdr))D,
- %H(ua - ua]'f')af] }(-’Q . (31)

In the above equations, for convenience, we have defined a series of n-functions
which relate to the elliptic functions as follows:

. 1 d 2ng™
h= Z Inq = —(=2xi)"%n, + 24771 Z 1_qﬂ
n=1 n=1/2,3/2... q
M= o = (—2mi) g5 (C(Ol‘r))
n#o(l q )z
=Y o = (~2nD)(P(07) + 2ny)
ngl
h=3 s - —2(~2mi)” qaim
n;éo(
- 5?3
ns = 1" " (amiy P
n#ld w=0
(—21ri)-4§22
6= 1 - 2 ‘u.:OI

ngl
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The N = 1 superconformal Ward identities are [29, 30]

N .
(I(u,)X) = {Wi(aé —68,)2mi&y0, + Z[Ai ((fu =& )Py + g;aoﬂm)
i=1

+ %CﬂiDi + ((Eo — &0 — i_frﬂoz') 3:'] }(X) (32)
and |

<I(u[]! gﬂ)f(ulvél) e I(umﬂgm)qu-{-l . ¢n)
= {mi(8; — 50,) +2mi0, HI(uy, £)) - 6,)

n i6 1 i
+ Z{A;‘ [foﬂ’oj + 1‘7;30”0:‘] + 5% 0+ [oncoj - @Hw]aj}
j=1

m
[

+ EZI(—I)jBUPDj(I(Ula‘El) - -I(”j-lafj-l)f(uﬂhfj-pl e ty)
j=
(33)

(note that A, = --- = A, = 3), where
Py = Plug;|mo;) + 2n4( ;) Coi = CQug|mg;) — 2mug; Hy; = H(uglmy) -

Putting (22), (24), (25), (32) and (33) together, we have the super W, Ward
identities on the supertorus of the odd spin structure,

In the case of the even spin structures we proceed in a similar way and the results
are given in the appendix.

4. Differential equations for correlation functions

In the super W, conformal field theories null vectors appear if the parameters (i.e.
the eignvalues of Ly and W) A, v satisfy some algebraic equations, like the case in
W, conformal field theories. Because the local algebraic structure remains the same
on the supertorus we can still use the null vectors to derive differential equations for
correlation functions on the supertorus of the W, superconformal field theories. In
this section we give, as examples, the first few null vectors in the N5 sector and derive
the differential equations satisfied by correlation functions on the supertorus using
the null vectors and the super W,; Ward identities.
The null vector x5 satisfies the conditions
Loxn =Gpxny =Waxny =Voxw =0 for »>0 34
Loxn =(A+ N)xn

with some positive half-integer or integer N. From (8) and (34), a little calculation
leads fo:
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2A
X172 = (G 12~ V- 1/2) Pa,v (35)

where @, , is the super W, primary field if

27 1 1
2 _ A2 ol I
Ivr=A [22+5c (A + 3) 5] (36)
and II. N == 1:
1--2A _
X1 = (L—l I Wi+ ‘a 1/2V 1/2)¢A w (37)
if
2 _ _ _ _
18v* = A[22+5 (A +1/5)(128A —17) (4/_\ 11)] . (38)

Substituting (35) into

(X1/2(zo, 09)$1(21,01) - . . En(zN, 05} =0

and using the Ward identities (Al) and (AZ), one obtains the following differential
equation:

22(9 8; + D)(¢ I ‘2‘?‘2{[9 Wi + (W) = Wiy )(2; — 20)8; D;

i=1

N
+ Wi (2 — 20)60;8] + Wy (z; — )9 [z(Fl(zis 2|7)8; + 3D, Fy D;
ooy

+0;8; Fy) 4 272226, + 16,(~ 1+ 2,) D; + A (~1424))] | {$o X)

+ Wil = )07 s (200 XN =0 (3)

where ¢g = ¢, , and X E¢; ... dy.
Similarly, from (37) and (Al) and (AZ2), one derives the differential equations as
follows:

N
1426 -
2 :5‘;(% N 3y [(Wt'lai (W}, — W;y)6,8,D; + W(z; — 2))8]
= i=1

+W3:(z FZD)Z FI(szJiT)at’):D FI‘DJ +AJBJFI)
e

+ 277 (22,8, + 30,(~14 24 D; + A, (-1 + Zﬁl)]) (¢o- .- D)

+ Wiz = Zu)zfzgéfg-,;;—)(z(dnoif))] + %C =0 (40)
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where

N - .
C = (G 1y VorpaboX) =2 Y [0;8;41D;][Wy;8;6,+ (Wi, - W, )(2:—20)8; D;

j=1,i=1

+W2,-(z,-—zo)9iA—i](¢oX}+Z Wsi(zi—zo)zfzzﬁ:)"(z(%x))

i=1

N
+ 3D Wy, + (WY, — Wy,)0:(2; — 2)8; D; + Wiy(2; — 2,)07

i=1

+ Wii(z; - zo)Ai](%X) (41)

with

N
Fi
+ 22 [22,8; + 16,14 23] D; + A (-1 4 24)] . (42)

5. Summary and discussion

In summary, we have derived the Ward identities on a supertorus for super W,
conformal field theories by using the operator formalism. For even spin structure,
when setting the Grassmann variables equal to zero the Ward identities reduce to
those in W, conformal field theories, as expected, since the super W algebra contains
the W, algebra as a subalgebra. We have also derived differential equations for
correlation functions on the supertorus by using null vectors of level % and 1 and the
super W, Ward identities.

In the Ward identities for insertions of J (see, for examples, (22) and (25)) there
still remain the correlation functions involving the zero mode J; on the right-hand
side of the identities. In order to have a complete description of super W, Ward
identities on the supertorus in the sense that the Ward identities entirely determine
the correlation functions with any insertions of generators in terms of those without
any insertion of generators inside, one has to deal with (W, ... ¢, ) which has
been investigated in [31]; only (V¢ ...o,) needs to be treated. One way is to
introduce the character-valued correlation functions

(b1 Pubp = tr{(—1)F ¢ exp(27i6Gy) exp(2wiBVy) @y . . - b }
with the Grassmann-odd parameter 5. Then we have

(Vob - 82} = 5l (—1)F g exp(2ni6Go) exp(2miBVi)dy . 6,).

The Ward identities involving the character-valued correlation functions can in
principle be obtained by using (17) and the super W, algebra and these Ward
identities are complete. However, the calculation will be very tedious and complicated
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and to get the compact expressions is, if not impossible, very difficult due to the non-
linearity of the super W, algebra. Another way to determine the action of zero-mode
J, inside the correlation functions is to use the coset construction for the super W;
algebra [8] and the detailed study using this method will be given elsewhere.

Although the operator formalism we used is simple for deriving Ward identities
on a supertorus in extended superconformal field theories, gemeralization of the
formalism to peneral super Riemann surfaces is probably not straightforward and
a possible way to do this is using the KN approach [34]. Deriving Ward identities
for extended superconformal field theories on higher genus super Riemann surfaces
would be an important problem.
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Appendix

In this appendix we give the super W; Ward identities for even spin structure s which
are not given in the text. Here we define the correlation function by dividing by Z
since it is not nilpotent in this case and we would like to compare results with those
in the N = 0 theories.

The Ward identity for one insertion of the generator J(z,8) is

N
(J(Zs 9)(1151 - 'd’N):(JX}=Z{%agFl(zs2{9976ilr)+W§18iF1(21ziveaeilr)ai

=1
N
4 (W — Wiy)Ds Find: D; + Wipd? + Wi By [Z(F,czi,zj|r)a,-
FEL

+ 3D, F D, + A8, Fy) + 272{~22,8; + 16,(~1+ 24,) D,
+8,(-1+2)} | ) + 0Wy(2)X)

N
+ ; WiBFlz;Z'Z_é;gm(Z(X>) (A1)
where

Fi(z,2;,0,6;|7) = 6, Fy (=, z;|7) + 0F {2, z|7)

Fy{z,5]7) = 27323 fo 2, z;]7) Fyy= 27320 f(z,%|7)

Py =6, Fyg —0F

fle(z),e(z)7) = {(z, ;i) + 2m(7) 2 e(z) = exp(2wiz)

_ % AN " (zvwe_ a8 (z\
fo(zazilf%—z_zi*‘(?) 2 [1_—?(?) _1—9“("2_> ]

1/2,3/2.., "
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The Ward identities for two insertions of the penerators are given by

N
(I(2,0)7(w, )by .. ) = (ITX) = Z{F(z,z,-, 0,6:|7)8; + § D, F, D;

i=]
+ 8,8, F}(J(w,0)X) + [30,F(z,w,8,0|T)
+ %DMWFUDW“OF(Z, w, 8, @Ir)aw] (J(w, @) X)
8

+62‘2m(Z(J(w,w)X)) (A2)
where

F(z,2,9,0,]7) = Fy(z,2|7)0 + 0, Fy (2, 2]7)

Fy=0,Fy —0F, Fy(z,z|my = 2722, f(z, %|7)
and
Fy(z,z|m) = 2722 fol 2, 217) (A3)

{(J(2,0}T(w, 2)¢1 .- - I} = (JI X}

N
= Z{ﬂa,?ﬂ(z, z, 0,0;17) + W8, F19; + (W], - W, ) D, Fyy 8, D,
=1

2
_ N
+ W, F, 87 + W, F) [Z(F,(zi,zjlr)aj + ID,;F;D; + A;5; Fy)
bE]

+ 272228, + 36,(=1 + 24} D; + Ay(~1 4 21?1)]] }(JX)

N
a8
= . . ,_2_—_
+E Wi Fyl2, 2,0, 6;|7)2; Z&(Zwir)(Z(J(w’(‘p)X»

i=1
21 5w
+oyq% Puefulz,w,0,¢m)(X)

11
321
+ %ariFﬂlaw(IX> + %8waan013mega(IX)

+ 8, Foy (302(1X) + F(To X} + BLo(A X))

+ Dy (59 Do p{IX) = F D0 (ToX) + f5(A)

+ Bo(KX)) + Fi(z,w, 0, 07) (B(KX) + ED(AX) + £0%(1X))
+ 0(Wy(2)J(w, 0) X} (A4)

1
+ 5,00 Fou(2,9, 0, 017 ){I(w, ) X) + 55705 Dy Fin Doy o (1X)
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where

N
(A(w)X) =}:<F,(w,z|r)a +=D,F,D, +8FI)A+ (- 1+n1)A——8 A

i=1

0

-2 ~4 2ng 2
du ZB(Z?Ti'r)( )+ B¥ [ 2 16n1+z ](X) 7oA
(AS5)
with
N 1 5
— . - — - - ] - _2—
A= ;{F,(w,z,h)a, +3D;FD; + A,@,F,}(X) +w Za(zm)(zm)
(A6)
N
Qw)X) = z{Z[FI(u,zj]r)aj +1D,F;D; + A;8; FI}B
i=l1
3o ismy_ 2 ~2__ 9 3
+ [w( 14 24%,) waw]3+“’ za(zm)(ZBJ ;0B
(AT)
with
N
B =Y {6; Fy(w,z|r)d; + 1D; Fy0;D; + A;3; FHﬂj}(X) (A8)
j=1
hi
(H(, @)1, ) = (HX) = 4] 30, Fy(,217)
=1
1 ) 1 _
— 5D,6;Fy D+ 8,8, F)0, B+ 55 (24 i) (X) - 552+ ) A
1 17 7 2
+ ;awA} t 5o AX) - IOBwA (A9)
and

N
(K(w)éy .. .oy ={KX) = 4{2(5}(“’:25]7')3::"‘ %DiFJDi+A£9iBiFI) 8,B

i=1
_3. _ -3 —3a 2 2 —2 3 } 11
(A10)

and the superconformal Ward identities which have been given in [29] and [30]. It is
easy to see that the above Ward identities reduce to those in W, field theories [31]
when setting the Grassman variables equal to zero.
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