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Abstract. Using the operator formalism, Ward identities are derived for super W, 
wnformal field theories on a supertom. Differential equations of correlation fimctions 
on the supertorus are also derived by using the Ward identities and null vectors. 

1. Introduction 

The study of extended conformal and superconformal field theories has been 
playing an increasingly important role in the recent development of conformal and 
superconformal field theories. Among them the W theories have attracted much 
attention [l-211 since the original paper [I] by Zamolodchikov appeared. Fateev 
and Zamolodchikov [2] investigated in detail the W, algebra and constructed the 
degenerate representations of the algebra by a Feigin-Fuchs construction. A spin-N 
generalization (W, algebra) has been given [3] and the explicit expressions of the 
W, [4] and W, [5] have also been given. The super W, algebra was examined 
in [6-8] and the N = 2 super W algebras have also been examined [9-111. All 
of these extended conformal and superconformal field theories are formulated over 
Riemann surfaces of genus g = 0. As emphasized by Polyakov [22], Cardy [U] 
and Bernard [24], we have to examine these theories on a torus and higher genus 
Riemann surfaces in order to find a complete description of all conformal and super 
conformal field theories. Recently, considerable progress has been made in the study 
of the extended conformal field theories on higher genus Riemann surfaces [B]. 

When one considers an extended conformal field theory on a higher genus 
Riemann surface, the theory acquires complex analytical structures and the combined 
use of algebraic and analytic methods provides further information on the properties 
of the theory. The correlation functions of the theory depend holomorphically on 
the modular parameters and local coordinates of the Riemann surface. The extended 
conformal symmetry of the theory must lead to the existence of the Riemann surface. 
As is well known, ward identities in a theory play an important role in determining 
correlation functions of the theory. For example, by using the conformal and current 
Ward identities on a torus, one can derive the differential equations for characters 
of Virasoro and Kac-Moody algebras [24,26,27]. A general formulation for deriving 
Ward identities on general Riemann surfaces was given by Eguchi and Ooguri [28]. 
TL~ Ward identities of the N = 1 superconformal algebra on general super Riemann 
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surfaces have also been given [29,30]. In a previous letter [31], we derived the Ward 
identities for the TV, algebra on a torus. 

In this paper we derive the Ward identities for the W, algebra on a supertorus, 
which are useful in calculating the correlation functions on the supertorus. Because 
the case of odd spin structures is more complicated than that of even spin structures 
we will give the derivation of Ward identities only for the former and results for the 
latter. We also derive differential equations satisfied by correlation functions on the 
supertorus in the super W, conformal field theory. 

The rest of this paper is organized as follows. In section 2 we review the definition 
of a supertorus and spin structures and express correlations on the supertorus in 
a form of trace. We derive the Ward identities of the super !W3 algebra on the 
supertorus in section 3. Derivation of differential equations for correlation functions 
is given in section 4. The last section contains the concluding remarks and discussions. 

Chao-Shang H u n g  and Liang-Xin Li 

2. Correlation functions on the supertorus 

The genus 1 super Riemann surface, the supertorus, can be generated by two 
translations on the super complex plane specified by even and odd coordinates ( z , e )  
[24,30,32]. There are four spin structures on the supertorus since there are two types 
of boundary conditions, periodic (+) and anti-periodic (-), for the odd coordinate 
0 and two directions of periodic boundary conditions, z i z + 1 and z i z + T 
(corresponding to a-cycle and b-cycle), for the even coordinate z. For the odd spin 
structure (+, +), the generators of the translation are 

zi=z+i e i = O  (la) 

and 

z ’ = z + r + e 6  e 1 = e + 6  (1b) 

where r and 6 are moduli and supermoduli parameters respectively. 

be taken to be 
Fortheeven spinstructureswith(a,,a2) = (+,-), (-,-) and(-,+),  theycan 

z ’ = z + ~  e ’=a ,B (h 1 
and 

2’ = z + T er = azo .  (a) 
For conformal field theories, in the operator formalism the correlation functions on 
the torus can be expressed as 

( h ( u l ) .  . .&(un)) = tr(qL0-c/Z4+1( ) .  . .4&(un)) /Z(v) .  (3) 

where q = exp(2rir) and Z(7) = tr(qLo--c/Z4). The trace should be taken to realize 
the periodicity in the b-cycle (the T direction) while the periodicity in the a-cycle is 
reflected by using a cylinder coordinate z = exp(-hiu). 
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For N = 1 superconformal field theories spin structure should be taken into 
amount and one has [30,33] 

(x') --= (+l(.tL1,~l)'..+n(U,,[*)) 

= tr((-l)fqLO-c/" exp(-(-2~i) ' /~6G~)q5~(u,,  [,) . . . +,(U,, 5,)) (4) 

for the odd spin structure where the trace is taken in the R-sector, and 

) (5)  
F L o - c / % x  (W = triYs((-l) q 

for even spin structure (-,+). Similarly for (-,-) we get rid of (-)F while for 
(+, -) we get rid of ( - ) F  and take the trace in the R-sector. In the above equations 
F is the fermion number. Note that we have defined the correlation functions for 
superconformal field theories without dividing by the partition function 2 since it 
may be a nilpotent even Grassman number. 

3. Super W, Ward identities on the supertorus 

The generators of the super W3 (it is also called super W5,2; see, for example, [7,9]) 
symmetry are the energy-momentum superfield I ( z ,  6 )  = $ ( z )  + 6 T ( z )  of weight 

and the superprimary field J ( z ,  6 )  = V ( z )  + e W ( z )  of weight $. The mode 
expansions of their component fields on a plane are 

W(z) = wn2-n-3 V ( 2 )  = Vvz-'-5/2 (7) 
, E 2  P 

where T runs over the half-integers or integers in the NS or R sectors respectively. 
The mode L,, G?, W, and V, generate the super W, algebra as follows [8]: 

C 
L,I = ( n  - m)L,+, + p ( n 2  - l)6,,,,, 

[L,?G,l = ($.-.)GRfP 
C 

{G,,G,}= 2L,t, + p-  a , L s , O  

[L,Jv,l = ( 2 n -  m)Wnt, 
[G,,W,I = (47,- n)V,t* 

IG,, Val = w7.t. 

[ wn , W,] = - 4 . 2  - 4)(n2 - l)nL,,,o + (12 - m) -( n + m t 2)(n t m t 3)  

3 n  
[L,, V,l = (- 2 - 7,) Vntv 

(A C 

3.5! 
1 - -(n + 2)(m + 2)) Lntm + b2(n - m)A,+, 6 
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[W,,V,] = -&(16r3 -4n3 - 12r2n t 8nZ - 3 6 r  + 19n)G,+, 

+ 6 ( ( n  + 2)P,+, f sK+p) 
1 

{VT, Va} = & ( rZ  - i) ( r z  - $)6,+,c f - (6 r2  120 -k 6s'- 8rs - 9)L,+, 

where the central charge c is equal to 
P and K are descendents of the supersymmetry generator G 

for the unitary super W3 model, the fields 

P(z) =: TG : ( Z )  - @'G(z) 

K ( z )  = 2 :  TB : ( z )  - $B3G(z) 

H is the bosonic field of weight 4 that can be constructed out of T and G such that 

I 17 
10 5c + 22 H ( z )  =: GBG : (2)  - - a 2 q z )  + - 

and 

A(.) =: TT : (.) - & a Z q Z ) .  (12) 

As usual, we have associated a y  field +( z )  of weight h with its modes 4, according 
to 

From superconfomal symmetry one can easily find that a primary superfield 
+; (z ,e )  = vi(.) t e+i(z) of weight Ai in the super W, field theory obeys the 
following operator product expansion: 

3vi 3vj 
2A; Ai(2A; + 1) w,, = - w,, = 

U';, = 
(15) 

%(A, - 1)v ;  3v; W/, = 
2(A; t 1/2) c(2Ai + 1) + 2A;(8Ai - 5 )  
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and 

are the quasisuperprimary fields associated with the superprimaq field di. Therefore, 
in addition to the well known (anti-) commutation relations 

[ ~ , , + ~ - z , e ) l  = -zn[(n t ].)(ai t +eo) + ~ a , I + ~ ( z , e )  
[~ , , d , ( - z , e ) ]~  = Z ~ - ~ / ~ [ - A ~ ( Z V  t i ) e+  z(as - ea, )~+; (~ ,e )  

(1b) 

(166) 

one bas 

- (wL1 - W , , ) ~ ~ ~ D + ~  t wizez2az+i + w,,e-zZs,(Z,e) 

for the primary superfields +i of the super W, algebra. 

and for the sake of convenience, we define 
We now derive the super W, Ward identities on the supertorus. For this purpose 

~ , “ ( u )  = (-z?,i)51zvn e2ainu F ( u )  = J,”(u) 

with J(u,E) = J F ( u )  t [ J B ( u )  = E, J,(u,E) being the generator of weight $ 
in the cylinder coordinate z = exp(-Z?riu), and similarly, 

for the energy-momentum supertleld I(u,€) = IF( . )  +XIB( . ) .  

insertion of the generator J ( u O , E O )  are given by 
According to (4), for the odd-spin structure, the correlation functions with an 

( ~ ( u ~ ,  to)x) = t r ( ( - ~ ) ~ Q ~ ~  e x p ( - ( - ~ . r i ) ’ / z ~ ~ o ) J ( z l , , E o ) ~ )  

= x t r ( ( - l ) F q L n  exp(-(-2ni)’lZsG,)J,(uo,E,)X’) (20) 
n 
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where we have omitted the constant factor qC/% for simpliciiy, which is irrelevant in 
the manipulations below. 

Chao-Shang Huang and Liang-Xi Li 

Using a permutation invariance trace and (8), it is easy to get 

A,  5 tr( (-1) Fq"O exp( -( -27ri) '/'6G0) J,( uo , t 0 ) X )  

(21) 
1 

1-Q" =- KJ,"(.O) t ( 8  t Eo)J,B(~o)),xl 

for n # 0, where Q" = exp(27rin(~ t c06)) and 8 = [Qn/(l- &")]6. Calculating 
the commutator in (21) by using (17) and substituting (21) into (20), one obtains the 
following Ward identity for one insertion of the generator J(u,() [35]: 

( J (uo ,50 )X)  = (Jo(uo>EO)X) 

and ql(r)  = 2r i a , lnq ( r )  with q(r) being the Dedekind 7-function. In (22), the 
operator ec, is defined by 
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In a similar way, by means of (16), (17), (21) and the super W, algebra (8),  one 
derives the Ward identities for two insertions of the generators: 

(J(uO,EO)I(ul,tl)X) = ( Jo (Uo ,€o) IX)  + { ; [ ( E o  - E l ~ ~ P ~ ~ o l l ~ o l ~  + 2Vl(TOl)) 

T 01 1 ] a,, } (J(Y,El)X) 

i6 1 + GauoH(uOllTol)] + ~ C ( " O l l ~ 0 1 ) ~ l  + [(to - € l ) C ( ~ O l l ~ O l )  

i6 
- --H(uo,l 47T 



and 

Here, ( I B I F ) ( u )  etc denote the normal products of two field operators which can 
be expressed as follows: 

Through some tedious calculations, we obtain the following expressions of the 
correlation functions involving ro or A or K: 



3 
10 

- -ai8 

and 



In the aboi equations, for convenience, we have defined a 
which relate to the elliptic functions as follows: 

(31) 

ctions 
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The N = 1 superconformal Ward identities are [29,30] 
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(32) 

m 

t C(-l)Jaopoj (1(ui,t1) . . .I(uj-1,tj-1)I("jtl,  t j t t  ' ' .  4,) 
1=1 

(33) 

(note that A, = . . . = A, = i), where 

poi =p(uoilToi) +2171(To'oi) CO; = C('JoilT0;) -2111uoi Ho; = ff('JoilToi). 

Putting (22), (24), (E),  (32) and (33) together, we have the super W, Ward 

In the case of the even spin structures we proceed in a similar way and the results 
identities on the supertorus of the odd spin structure. 

are given in the appendix. 

4. Differential equations for correlation functions 

In the super W, conformal field theories null vectors appear if the parameters (i.e. 
the eignvalues of Lo and WO) A, 'U satisfy some algebraic equations, like the case in 
W3 conformal field theories. Because the local algebraic structure remains the same 
on the supertorus we can still use the null vectors to derive differential equations for 
correlation functions on the supertorus of the W, superconformal field theories. In 
this section we give, as examples, the k s t  few null vectors in the NS sector and derive 
the differential equations satisfied by correlation functions on the supertorus using 
the null vectors and the super W, Ward identities. 

The null vector xN satisfies the conditions 

LnxN = GnxN = W,xN = VnxN = 0 for n > 0 
(34) 

LOXN = (A t N ) X N  

with some positive half-integer or integer N .  From (8) and (34), a little calculation 
leads to: 
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I. N = 1. 2' 

where is the super W, primary field i f  

and 11. N = 1: 

w-l + v-1G-l/2v-l,2 1 bA,q 

18vz = *[-(A 1 + 1/5)(128A - 17) - y(4A 1 - l l)]  . (38) 

(37) 
l + 2 A  

x1= L - 7  ( 
if 

Substituting (35) into 

~ x l / 2 ~ 2 0 ~ e O ~ b 1 ~ z 1 ~ e 1 ~ ~  ..$N(ZN,eN)) = o  
and using the Ward identities (Al) and (AZ), one obtains the following differential 
equation: 

where $,, E r$A,+ and X +l. .  . bN. 

follows: 
Similarly, from (37) and (Al) and (AZ), one derives the differentia1 equations as 
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where 

N 

c = (G-l,,v-l,2#ax) = 2 [e,aj+~~jl[w,ia,s;+(~;;-~li)(~i-~o)ai~, 
j= l ,k l  

5. Summary and discussion 

In summary, we have derived the Ward identities on a supertorus for super W, 
conformal field theories by using the operator formalism. For even spin structure, 
when setting the Grassmann variables equal to zero the Ward identities reduce to 
those in W3 conformal field theories, as expected, since the super E’, algebra contains 
the M’, algebra as a subalgebra. We have also derived differential equations for 
correlation functions on the supertoms by using null vectors of level $ and 1 and the 
super W, Ward identities. 

In the Ward identities for insertions of J (see, for examples, (22) and (25)) there 
still remain the correlation functions involving the zero mode J, on the right-hand 
side of the identities. In order to have a complete description of super W, Ward 
identities on the supertorus in the sense that the Ward identities entirely determine 
the correlation functions with any insertions of generators in terms of those without 
any insertion of generators inside, one has to deal with . . . #N) which has 
been investigated in [31]; only (&#l.. . #,,,) needs to be treated. One way is to 
introduce the character-valued correlation functions 

(#1 . . . #,,)@ tr{(-1) F q La exp(2?ri6Go) exp(Z?rip&)&, . . . #,,} 
with the Grassmann-odd parameter p. Then we have 

(&q$.. .#n) = ---tr{(-1)FqLoexp(2ni6G,)exp(2?ri~Vo)#o.. .#n} 
i a  

2xi ap 

The Ward identities involving the character-valued correlation functions can in 
principle be obtained by using (17) and the super W, algebra and these Ward 
identities are complete. However, the calculation will be very tedious and complicated 
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and to get the compact expressions is, if not impossible, very difficult due to the non- 
linearity of the super W3 algebra. Another way to determine the action of zero-mode 
.lo inside the correlation functions is to use the coset construction for the super W3 
algebra [8] and the detailed study using this method will be given elsewhere. 

Although the operator formalism we used is simple for deriving Ward identities 
on a supertorus in extended superconformal field theories, generalization of the 
formalism to general super Riemann surfaces is probably not straightforward and 
a possible way to do this is using the KN approach [34]. Deriving Ward identities 
for extended superconformal field theories on higher genus super Riemann surfaces 
would be an important problem. 

Chao-Shang Huang and Liang-Xin Li 

Acknowledgments 

We thank Y-B Dai, H-Y Guo, C H Chang and Z Y  Zhao for discussions. This work 
is supported in part by the National Nature Science Foundation of China. 

Appendix 

In this appendix we give tbe super W3 Ward identities for even spin structure s which 
are not given in the text. Here we define the correlation function by dividing by 2 
since it is not nilpotent in this case and we would like to compare results with those 
in the N = 0 theories. 

The Ward identity for one insertion of the generator J (  z ,  0 )  is 

N 
( J ( ~ ,  e)41.. . 4N) = ( J X )  =E[ :a?~,(., r i , 6 , ~ i i r ) + ~ , , d i ~ 1 ( z ,  zi ,e ,  eiI7)ai 

i=l 

t (wii - wi,)D;Fo,b;D( t ri.’,.2@ f w;3ZF1 c(F l ( z i , z j lT )a j  [ ”  j # ;  

+~DjFrDj+Aj~jF,)+z~2(-2zj~i+~~i(-1+21j,)Di 
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The Ward identities for two insertions of the generators are given by 

where 
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where 

Chao-Shang Huang and Liang-Xin Li 

and 

and the superconformal Ward identities which have been given in [29] and [30]. It is 
easy to see that the above Ward identities reduce to those in W3 field theories [31] 
when setting the Grassman variables equal to zero. 
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